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SUMMARY

A continued fraction representation for Theodorsen's circulation function
is derived. This continued fraction converges to the circulation function
everywhere except on the branch cut. It can be used to compute the function
except when the argument is small. When converted to pole-residue form the
continued fraction greatly facilitates the evaluation of integrals containing
the circulation function.

INTRODUCTION

Theordorsen's circulation function (ref. 1) relates lift to downwash
in unsteady incompressible potential flow. The function can be expressed as
the ratio of two continguous confluent hyperg~ometric functions and hence has
a continued fraction representation derivakle from the continued fraction of
Gauss.

This continuea fractiun can be truncated to give rational approximations
to the circulation function. These approximations are useful in control
theory because their pcles and zeroes are easily computed. These approxima-
tions can also be inverse Laplace transformed to give accurate approximations
to Wagner's function.

SYMBOLS
A recursion coefficient matrix
An truncated continued fraction numerator
Alk’ Bg coefficients of least squares simultanecus eguations
a continued fraction coefficients (numerator)
a bk' ¢y polynomial recursion coefficients
Bn trurcated continued fraction denominator
bn continued fraction coefficients (denominator)
C(-is) Theodorsen's circulation function
Cn(-is) truncated continued fraction approximation to C(-is)

C(w) least square approximation to Cl(w)



dk diagonal elements of A-matrix
Ezn(t) correction integral used when evaluating Wagner's function
ek subdiagonal and superdiagonal A-matrix elements

2Fo(a, b;;z) confluent hypergeometric function

F(-is) even part of C(-is) (real part of C(-is) if -is is real)

G(-is) [c(-is) - F(-is)]1/(i2)

Iv modified Bessel function of the first kind

i /-1

Jv' Yv Bessel function of first and second kind

n iruncation order

n' number of residues that contribute significantly to CZn(-is)

Pn even truncation numerator

E; odd truncation numerator

Qn even truncation denominator

§n odd truncation denomirator

R ratio of two contiguous confluent hypergeometric functions

Rk(x) any polygomial of'degree k satisfying a three term
recursion relation

s complex argument of circulation function = ¢ + iw

Sy poles of Czn(-is)

si zeros of numerator in C2n(-is)

t time

X polynomial column vector

x 4s

At result spacing in FFT quadrature

., Vv coefficients used in least squares approximation

k' 'k

9]



$(t) Wagner's function

w, a value of w such that |C2n(w) - C(w)l <e if w> Wy
Aw step size used in FFT quadrature

~ asymptotic to

x approximately equal

A eigenvalue of A (= -4s)

v arbitrary order of Bessel function

o} real part of s

w imaginary part of s

THE CONTINUED FRACTION

Theodorsen's circulation runction can be expressed
-1 = +
C(-is) Kl(s)/(Ko(s) KI(S)) (1)

The region of aerodynamic interest in the complex s-plane lies on or near the
positive imaginary axis. The Bessel function Kv(s) is expressible as a
confluent hypergeometric function (ejs. 13.6.21 and 13.1.10.2 of ref. 2).

K, (s) =(§%)5 e ® 2F0(% + VY, 4% - v;; - g;) (2)

Replacing the Bessel functions in C =1 - Ko/(Ko + K.,) by confluent hyper-
geometric functions and using Gauss' relation for con%iguous functions
(eq. 15.2.14 or 13.4.17-18 of ref. 2) to combine the numerator functions gives

C(-is) =1 -"% 2Fo (3' Wi o= g;)/zFo(%' - R - EE) )

The ratio of two contiguous confluent hypergoemetric functions

- sz > - . {
R = 2F0 (a, bl' )/2EO (a, b 1,' z) \4)

has a very simple continued fraction representation (the confluent form of the
continued fraction of Gauss, sce chapter XVIII of ref. 3). It is



R= az
1- ) - bz
1 - (a + 1)z
1 (b + 1)z
1 (a + 2)z
1 -. .. (5)
so
- 2
C(-is) = b_ +
o a
2
b. +
1 a
b, + =—
2 b3 + ... (6)
where bo =1, al = -k, b1 =1 (7)
and
azn =2n - 1, b2n = 4s
n=1212,... (8)
qper MLl byy =l
That is,
C(-is) =1 - %l
1+
1
4s +
R U S
s + ., . . (9)

This continued fraction converges to C(-is) in the entire complex s~plane
cut on the negative real axis.



RATIONAL APPROXIMATIONS

Let Cp(-is) represent the continued fraction of equation (6) and (7)
truncated by discarding all terms beyond ap/b,. That is, by setting ap4)
to zero. This can be expressed as a rational function

cn = An/Bn (10)

where A,, B, are polyncmials in 4s computed by the usual forward recur-
sion formula (ref. 3) for continued fractions, namely

A =bA _,+aA .; B =bB ,+aB ,, k=12... (11)

Since the even and odd terms of the fraction have different forms (eq. (8)),
it is convenient to separate the even and odd subscripts in recursion (11).
Let

C2n(-is) = %Pn(4s)/Qn(4s) (12)

Cypp (Fi8) = P _(45)/0Q (4s) (13)
where

Pn = 2A2n' Qn = BZn

BT 2yt 9 =By (14)

The recursion formulas for P,, Qp, 55 and 5h are derived from equation (11)

and are

i
N
~

il
[

Po(x) Qo(x)

(15

]
®
+
o

Pl(x) X + 2; Ql(X)



It can be
of degree

2

]

(x) (x + 4k)Pk(x) - (2k - 1) (x)

k+1 Pra1

Qg (¥) = (x + 4K)Q (1) - (2k - D _ () (16)
Fo(x) =1 §o(x) =1

Fi(x) =x + 3 Ei(x) =x + 2 an
Py = (6 + 4k + 2)B (0 ~ (4% - DF_ ()

Quap (¥ = (x + 4k + 20 () ~ (4° - DB (x) (18)

seen that P,, ©On. Eh, and 55 are all polynomials in x = 4s

n for n > 0. The first few polynomials of each set are
0, =1 0 =x+1
0, = x% + 5x + 3; 0, = x° + 13x% + 34x + 15

Q4 =X + 25x3 + l65x2 + 298 x + 105

0 = x> + 41x" + 516x° + 2301x2 + 3207x + 945 (19)
= » = +
Po 2; P1 X 2
P2 = x2 + 6x + 6; P3 = x3 + l4x2 + 45x + 30
P4 = x4 + 26x3 + 188x2 + 420x + 210
5 4 3 4
P = x° + 42" + 555x° + 2742x" + 4725x + 1890 (20)



Q =1; Q1 = x + 2

aé = x2 + 8x + 9; 65 = x3 + 18x2 + 74x + 60

g, =x"+ 325> + 291x2 + 216x + 525

0, = x> + 50x* + 804x3 + 4920x2 + 10551x + 5670 (21)
Po = 1; Pl =x + 3

- 2 - 3 2

Pz =X + 9x + 15; P3 = X + 19x + 90x + 105

P, = 22+ 33x> + 321x3 + 1050x + 945

- 5 4 3 2

P5 =x + 51x° + 852x™ + 5631x" + 14175x + 10395 (22)

Inspection of the first new polynomials and the recursion formulas shows til.at

Qn(O) = (2n - 1)}
P (0) =2(2n ~ 1!
Qn(O) = (n+ 1)(2n - 1!!
P (0) = (2n + 1!} (23)
c, (0 =1
and
1

Cone1 (O = 1~ 507




The even numbered convergents Cy, give the correct value of C(0) while
the odd convesgents Cpp4] merely approach the correct value. Because of
this, and because they have a slightly simpler eigenvalue matrix, the even
convergents are much more convenient to use.

The even convergents are the diagonal elements, and the odd convergents
are subdiagonal elements of a Padé matrix defined by setting its first column
to the convergents of the asymptotic series for C(-is) and setting its first
row to those of the asymptotic series for 1/C(-is). Reference 4 tabulates
the first few diagonal Padé elements. However, the expression for Cg(-is)
in reference 4 is incorrect. Fortunately reference 4 makes no further use
of Cg (-is).

POLES AND ZERQS

All the poles and zeros of Cop(-is) 1lie on the negative real axis.
If they are numbered in order of distance from the origin they satisfy the
inequality

-0 < g' < <g' ... < s < < g! < <0
Shn " % T Shm S, ¢ 8y 15 51

where s, are the poles (zexros of Qp) and si are the zeros (zeros of P,).

It is not practical to compute the poles of Cpy,(~is) by solving
On{x) = 0 as a polynomial equation if n is large because Q,(x) overflows
~*.. computer if x is barely outside of the convex set containing all of the
roocs. Tnstead the recursion formula (16) is used to construct matrices °
whose eigenvalues are the poles and zeros of Cp,(-is).

Suppose the polynomials Ry (x) are each of degree k for k > 0 and
satisfy the three term recursion relation

Afkay T B F BIR TR, =0 (24)

If R} #0 then a, and b, should be redefined so R.3 does equal 0. 1If
Rn(x) = 0, thenrn equation (24) can be written in matrix form as



[-b -a 0 0 o} 0

o o)
-cl bl --a1 0 0 0

0 -02 b2 --a3 0 0

0 0 —c3 b3 0

. 0

0 0 0 0 0 cn—l n=1

L

This is a matrix eigenvalue problem

AX = XX
where A = -x
X=col (R, R, ...R_1)

and A is a tridiagonal matrix whose kth row is

(0, e eeyp -ck“l' bk_l' -ak_l, -c-o)

Rn-l

n-1

The matrix A is made symmetric by replacing R by Ykﬁ# where

Y/ Vg1 = Y6721

> L
|

(25)

(26)

(27)

(28)

(29)

(20)



Then AX = AX where now (31)

X =col (R, Ry, ... R

§ ) (32)

and the kth row of A is

(0, «..,y e s dk' ek+l' )] (33)
where
dk = bk-l (34)
as before and
e = t’ck_lak_2 (35)
To compute the poles S, of C2n(-1s) let Rk = Qk' Then
l—l -1 0 0 0
~1 4 -3 0 0
A= (36)
0 -3 8 -5 0
0 0 -5 12 -7
N ) -
and s, = -4\ . (37)

10



That is

for k

3 ton ? (38)

VG‘Q‘
1]

T

[
+
w»

next k J

Similarly the zeros s of C n(—is) are obtained by letting Rk = Pk'

Then k 2
- -
2 -2 0 0 0
-2 4 -3 0 0
0 -3 8 -5 0
A = (39)
0 0 -5 12 -7
s, = ~hA (40)

11



That is

dl = 2 A

e, = V2

d2 = 4

ey = -3

d3 =8 } (41)
for k=4ton

dk = dk—l +4

e = ek-l -2 J

Both A matrices are tridiagonal, symmetric, and positive definite. Eigen~-
values can easily be computed even for very large n because the nonzero matrix
elements are easy to compute and do not vary widely in magnitude. Table I was
computed using procedure t3%1 on pace 232 of reference 5. It lists the

' y -
poles Sy and zeros Sy of Czn(-_s) for n 1, 2, 4, and 8.

POLES AND RESIDUES
The expression for Cyp(-is) can be written
Pn(4s) - Qn(4s)

L1
CZn(-ls; =5+ 2Qn(4s) (42)

P, -~ Q, 1is of lower degree than Q. and the zeros of Q, are all distinct
s0, using partial fractions, one obtains

r

1 ¥.
s = = - )
CZn( iz > + E p— (43

The coefficients of the partial fraction r; are the residues of the poles
Sy - They can be computed from either

12



Pn(4sk)

r, = ———= (44)
k 8Qn(4sk)
or
[}
n s -s
1 ' k 2
r, ==(s -8 ) (45)
k 2k -1 sk 52
#k

The residiues aprnvoach zero rapidly as Kk increases. This is because of the
factor sy - s; in equation (45). Except for the upper left hand cormer
elements d; and ey the eigenvalue matrices for sy and sy are identical.
These corner elements have little effect on the higher eigenvalues because the
matrices are diagonally dominated. The fact that r, + 0 rapidly as k
increases is important because it means that when n is large the sum (43)

can be truncated as n' where n' < n and

|rk/sk| < (46)

for all k > n'. Then

X.
1 x
Cop(-28) = 5 +Z s-s (47

The number of terms in the sum (47) increases much more slowly than n,
Table II, which is a continuation of table I, liists the poles, zeros, and
vesidues for n = 16, 32, 64 and 12&. It also lists n' based on

¢ = 10-10, Note how slowly n' increases with n.

APPLICATIONS

Apptications of the continued fraction representation of C(-is) include
its uss to evaluate the function and its use to represent or to evaluate
integrals (particuiarly infinite limit integrals) containing C(-is).

The error contours of Czp,(-is) resenble a family of parabolas containing
the negative real axis and with a common focus at the origin. That is, if
s = 0 + iw (0,w real), then the error contours are approximated by the family
of parabolas

13



2 2
2woo +w = wo (48)

Wg, the intercept of the parabola with the w-axis, is a function of €, the
error tolerance, and of n. Given n and € if &, has been computed then
Con(-is) - C(-is)| <€ for all s = 0 + iw for which

2 2
+ >
W 2w°0 wo {49)

It is hard to compute w, from € and n so the usual procedure is to
choose W, and then compute

€= |c (W) - C(wo)l (50)

2n

For example, if Wy = 2 and n =8, then . = 0.3 X 10-12 and the error in

Cop is less than & for all real w > 2 and for all complex s = ¢ + iw
for which 40 + w? > 4.

The continued fraction is the most efficient way available to compute
Cw) if w> 2 or if complex s =~ 0 + iw satisfies 40 + w? > 4. It should
be used in pole-residue form truncated at n' for small w. If w > 20
(or if 460 + w? > 400) it should be used as a truncated asymptotic series.
The asymptotic series for C{-is) is

-
Lo L2 1 _38
@s)®  @s)®  (as)?

(51)

+ -

286_ _ 2756 32299 _ )
(4s)5 (45)6 (45)7 J

as s > o for larg(s)l < %;.

The asymptotic series is obtained from equation (9) by repeated division.
The series (51) diverges for all s. The asymptotic series, unlike the
continued fraction, can be used to approximate C(-is) on the branch cut,
arg(s) = *m, if !sl is sufficiently large.

The other use of the continued fraction mentioned at the beginning of this
section is to facilitate evaluation of integrals containing C(-is). TFor this

14



application the pole-residue form, equation (47), is used. Two examples are
presented. One is the evaluation of Wagner‘'s function ¢(t). The other is
the evaluation of some integrals that occur when approximating C(-is) using
least squares.

Wagner's Function

Wagner's function ¢(t), is the inverse Laplace transform of C(-is)/s.

c+ico

_ 1 st C(-is}
d(t) = on e P ds (52)

C=1i%

Fach rational approximation to C(-is)

n'<n
= e
+ E s—_k-;— (53)
=1 k

has an associated =xponential approximation to ¢(t)

n'fp
¢2n(t) =14+ E
k=1

N

Czn(-is) =

Y,
Skt (54)

& e

obtained by substituting equation (53) into equation (52) and performing the
indicated integral transformation. The 1 appearing in equation (54) is
computed from

1
C2n(0) =3 + — =1 (55)

This is only true for the diagonal Padé elements Cyp. For the subdiagonal
pPadé elements

15



=

X
1 k _ 1
Cone1 (O =3+ o l-5n+3 (56)
k=1
n'<n -
1 = Tk gkt
Coptr®) =1 - 3555+ 2 : 5 e (51

The odd approximants to ¢&(t) do not give the correct limit at t=w. The
approximation (54) can be used to compute ¢(t) accurately, even fcr small n,

if t is sufficiently small. For large t equation (54) has too strong an
exponential decay.

Equation (54) illustrates the use of the pole-residue form of the
continued fraction for C(-is) to replace a numerical integration by a closed
form integration. It can also be used to simplify a numerical integration.

To integrate equation (52) the path of integration (c-i®, c+i®) must be
fixed. The only restriction is that the path be to the right of the branch
peint at s=0 and have a nonpositive »eal part at the two ends. Two paths
are very convenient for numerical integration. One is the imaginary axis as
shown in figure 1. The other is the branch cut as shown in figure 2.

If path 1 is used and symmetry of the integrand is considered (see
sections 5 through 7 of ref. 6 for details) one obtains the following integral
representation for ¢(t)

o0

. _ 2 sin wt
plt) = = Q% Fl) dw (58)

(o)

If path 2 ig uscd and symmetry of the integrand is considered one obtains

5-2 e-St ds
¢(t) =1 -

(59)

2 2 2
o (Kb - Kl) + T (Io + Il)

The continued fraction for C(-is) cannot be used to help evaluate
equation (59) because the continued fraction diverges along the branch cut.
However, the continued fraction can provide considerable help in evaluating
equation (58) as will be shown.

16



The function F(w) appearing in equation (58) is usually defined to be
the real part of C(w). However, if complex arguments are permitted, it is
more coavenient to define it to be the even part of C(-is).

F(-is) = %[C(-is) + clis)) (60)

The function F(-is) usually occurs in association with the function
G(-is) defined

Gl-is) = i-li[C(-is) - clis)) (61)

Equation (53) furnishes rational approximations to F and G

n*<n r
=y -S
1 k 'k
Fon@ =35 * 2 : L2, 2 (62)
k=1 k
n'<n
s, r,
Gzn(w)zu.‘ E 5—2-:—“)—2- (63)
k=1 k

If the F(w) in equation (58) is expressed

F(w)

Fon (@) + [F() - an(w)] (64)

and the first an is integrated in closed form one obtains

o(t) = ¢)2n(t) + E_ (t) (65)

2n

where &o,(t) is given by equation (54) and the erxror or correction term
EZn(t) is

(o] .
sin Wwt
E, (t) = = [Fw) - an(w)] dw (66)

17



Equation (66) is much easier to integrate numerically than equation (58).
This is because it has finite limits and because a large relative error can
be tolerated. Infinite limit oscillatory integrals are notoriously difficult
to compute. Equation (66) has a finite upper limit because F - Fy, is
essentially zero for w > Wo. A large relative error can be tolerated because
IF - FZn' << F even for w < wg.

If equation (66) is to be integrated for a single value of t a
sophisticated integration technique such as Legendre-Gauss or Romberg quadrature
can be used. However, if a large number of values of t are used, then
equation (66) should be evaluated as a trapezoidal sum using a fast Fourier
transform. For a quadrature order m let

w
Aoy = =
m
w =. kAw, k=0tom (67)
t = to + RAt, £=0tom
The FFT formalism requires that
AwAt = 21/m (68)
S0
Ae = 2 (69)
w
o
The trapezoidal sum for E2n is
m"
2
x - i t + At
EZn(to + R4t) p Aw sin kAw ( o )
k=0

F(kdw) - For (kAw)

. 70
kAw (70)

18



oxr

m-1
2 - 2 2 : -i2mlk/m
EZn(to + wo L) * -m T e fk (71)
k=0
for £ =0 to m-1
where fo =0 and
woto

e n mO wo
£ = F— [F(; k) - an(;- k) (72)

for k=1 to m- 1.

By using a fast Fourier transform to evaluate the sum in equation (71),
it is possible to evaluate Epn(t, + 2T/w, %) for m values of £ using
only 1logs(m) times as much computing effort as would be required for one
value of L. However, only the Epn(tg + 2W/wo 2) for % < m/4 are reason-
able approximations to the integral {66). The term t, in the argument of
Eyn 1is to permit interpolating between values of f#At. It should not be
larger than 2m/w, or aliasing can occur. Thus, the largest value of t for
which ¢(t) can be computed is

=

m

2w
[¢]

¢ < (73)

This can be increased either by increasing the quadrature order m or by
1creasing the exponential approximation order n, thereby decreasing W .

The circulation function F(w) in equation (72) can be computed using
Bessel functions

Jl(Jl + Yo) + Yl(Yl - Jo)
2

(J

Flw) = (74)

2
1 + Yo) + (Yl - Jo)

A very convenient way to compute J,, or Y, for a large aumber of equispaced
arguments

19



w = :;-k, k=1 to m-~-1 (75)

is to evaluate Jy and Yy accurately at the two ends, @ = Wy/m and

W= Wy - Wy/m and ther to approximate J,, Y, at all the intermediate

points (k = 2 tom - 2) by solving the Bessel equation ag a finite difference
boundary value problem. This permits computing J , Y. at the intermediate
points with less computing effort than is required for an elementary function
such as a square root. It has the additional advantage that the accuracy

with which the intermediate Bessel functions are computed increases as the
quadrature order m is increased.

Equations (65), (53), and (71) can be used to compute ¢(t) for any
reasonable value of t. For unreasonable values of t such as 106 or to
estimate the behavior of ¢(t) as t + © the other integral representation,
equation (59), should be used. It can be evaluated as a Laguerre-Gauss
quadrature. When setting uo a Laguerre-Gauss quadrature the exponential
weight function should represent the behavior of the integrand at infinity
rather than merely being an easily identifiable exponential factor. That is,

-{2+t) s -st

in equation (59) the exponential weight function is e , MOt e .

The factor e-2$ comes from the asymptotic behavior of I° and Il' Thus
<«
o(t) = 1 e (IS (g as (76)
o
where
£(s) = o’ (17
T2 2 2 2
- +
sk, - xp” + 7o+ 1]
letting s = x/(2 + t) gives
o +]
_ _ 1l -X .
o(t) = 1 >+ % e f(? " t) dx (78)

which can be integrated numerically to give

20



m

. 12: *x
o) = 1 - 5= Yk f(z + t) (79)

k=1

where x,, w, are the Laguerre-Gauss abscissas and weights. As t »> @
the integral in (78) approaches

00

e ® £(0) dx = 1 (80)

so a very ¢rude approximation to ¢(t) is

1

o(t) = 1 - =

(81)

A slightly better approximation is cbtained by retaining the next term in
the expansion of £(s) about the origin and integrating in closed form. This
gives

¢(t)=1-2it [1+23_t2n(4+2t;l (82)

Equations (Bl) or (82) show that ¢(t) approaches 1 1like 1/t as t
increases rather than exponentially as indicated in equation (54).

A Least Squares Approximation to C(~is)

This section describes the use of the pole~residue form of the continued
fraction for C(-is) to evaluate some integrals that occur when generating
a least squares rational approximation to C(-is).

The continued fraction for C(-is) is an expansion about s = ® + i0
and hence is very accurate for large O© and iwl (where s = 0 + iw) and
very uneconomical when 0 and ® are both small. It has been shown
(refs. 4 and 7) that economical rational approximations valid for 0 < w <
and O * 0 can be generated by least squares.

There are several ways of generating a least squares rational approximation
to C{-is). The method described here has a moderately complicated derivation
but is computationally very simple.

21



Let

11
e S

+ iw
Yk

Clw =3+ (83)

k+1

where the constants u, and vy are chosen so C(w) approximates C{(w)
over the entire positive real w-axis. One way of computing the constants uy
and vg 1is to minimize the crror

o0
E =J W T - cw]? (84)
(o]

The expression for C(w), equation (83), is linear in the ux and the nonlinear
in the vk. Hence, it is very easy to minimize E with respect to the uy

and very hard to minimize E with respect to the vy. For this reason the

vk are preassigned and the minimization is performed with respect to the wuy
only. The v, are chosen to be -sy for n' =m if no better choice is
available. The error expression E, equation (84), contains a weight function

-1
w %. This is included to origin weight the error. It is needed because C(w)

has a logarithmic branch point at w = 0 and hence is hard to approximate

fcr small w. All that has to be done to compute the u is to set 8E/8u2
to zeru and solve the resulting system of linear simultaneous equations. This
is performed as follows.

Let

Cl(w) = Flw) + iG(w) (85)

"

where

3

?‘(m)

1}
(ST
+

—3 (86)

1

G (w) (87)

22



Then

E=f Wi [F-2+ G-a2] aw (83)
(o]
and

1 9E i F = 3G

= == w (F-F)m=—+ (G-G) =—| aw=0

2 3u2 I auk 8u2

(o]

for £ =1tom (89)

This gives the system of equation

m
E AQk uk = BQ’ (L =1 to m) (90)
k=1
where
20 vV, V, + wz
i -1 £ 'k
A, = —— w dw (91)
ks J (vﬁ2 + wd) (vk2 + wd)
. o, V(P - %) -~ WG (w)
BQ’ s — w 3 > dw (92)
2 J, v,otw

The factor 1/(mv2) was appended to both A
some subsequent arithmetic easier.

and B because it makes

Lk %

The integral A can be evaluated in closed form. It is

2k

(93)

23



The integral Bg has to be computed numerically. A very easy way to perform
this numerical integration is to replace C = F + iG by Cjy,, the pole-residue
form of a truncated continued fraction, with n chosen large enough so that

the error Cap(w) - Clw) is negligible compared to the error Clw) - Clw).
Then

n'<n c
By = Zvlfs /1_’“/_1__ (94)
=1 2 k vy ~Sy

After Ag and By have been computed, equation (90) can be solved for uy.

The above procedure minimized E with respect to ux for preassigned wy.
If one wants to minimize with respect to vi, then substitute equation (20)
into (88) to get the penalty function

m
E=E - mw?2 Z B, W (95)
k=1

and perform a nonlinear optimization using some technique such as the Davidon-
Fletcher-Powell algorithm (ref. 8). The constant E, in equation (95) is
given by

[0
Q -

It can be computed using Cjp,(-is) the same way By was computed. However,
since it is a constant, it is not needed for the optimization and can be
set to zero in equation (95).

CONCLUDING REMARXS

The principal result of the investigation is the fact that Theodorsen's
circulation function has a continued fraction representation with a particularly
simple coefficient pattern, namely the consecutive odd integers. Although
this continued fraction converges extremely slowly it still furnishes an
cconomical way to compute the circulation function. The reason for this is
that when converted to pole-residue form the terms containing distant poles
can be discarded. For example, retaining only the 120 poles nearest to the
origin from a 2048 term pole-residue form of the continued fraction introduces
an additional errcr of only 10-10 to the approximation to C(-is).
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This investigation also furnished some information about the singularities

of the circulation function. The Bessel functions that comprise C(-is),
namely Kgy(s) and Kj)(s), have no singularities other than logarithmic

branch points at s = 0 and s = ©, The cnly singularitiss that C(-is) can

possess arc these two branch points and, possibly, poles at the zeros of the
denominator in C(-is), namely Kg(s) + Kj(s). Since Cyu(-is) converges to
C(-is) everywhere except when arg(s) = %7, these zeros, if they exist at
all, must all lie on the negative real axis. On the negative real axis the
Bessel functions K, and K; can be expressed as functions of positive

real argument by analytic continuation (see eq. 9.6.31 of ref. 2). The

real part of this analytic continuation is the same for all sheets of the
Riemann surface and is Kg(x) - Kj(x) where x = -s is real and positive.
Inspection of figure 9.8 of reference 2, and of the asymptotic expression for
K, and K;, shows that Kg(x) - K;(x) has no positive real zeros. Hence
C(-is) has no singularities whatsoever except for logarithmic branch points
at s =0 and s = o,

Tne continued fraction representation of C(-is) furnishes a very
convenient way to compute Wagner's function from its definition as an inverse
Laplace transformation. This leads either to an exponential approximation
to Wagner's function or to an exponential approximation with a numerically
integrated correction term. The latter can be used to compute ¢(t) (but
not 1 - ¢(t)) to full register accuracy.

Another application of the continued fraction that was discussed
involved its use to evaluate some integrals that occur when approximating
C(-is) by least squares. Low order approximations obtained using least

squares are much more accurate over the frequency range of aerodynamic interest

than the same order truncations of the continued fraction. However, high

order approximations (those with over twenty terms) should be obtained by

truncating the continued fraction because of numerical problems associated
with the least squares process.
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TABLE I.

k -s, poles -sl: zeros ry, residues
n=1

1 0.25000600000 I 0.5000000000 0. 1250000000
n=2

1 0.1743060906 0.3169872981 0.0798343811

2 1.0756039094 1.1830127019 0.0451656189
n =4

1 0.1156902163 0.1742812056 0.0414478723

2 0.5376897142 0.7031255226 0.0728261277

3 1.6861213269 1.7116460071 0.0105184411

4 3.9104987426 3.9109472647 0.0002075590
n =28

1l 0.0708292313 0.0895316590 0.0162792778

2 0.3014411613 0.4253867638 0.067728839%4

3 0.8103741892 0.8990325533 0.0333426883

4 1.6931876604 1.7102975420 0.0069379972

5 2.9738355808 2.9753€15342 0.0006840380

6 4.7259501453 4.7260072766 0.0000268518

7 7.1126863436 7.1126869821 0.0006003071

8 10.5616956880 10.5616956889 0.0000000005
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TABLE II.

k =Sy poles -s]; zZeros rk residues
n =16 n' = 12
1 -0399290405 -0450767705 .0049890236
2 .1770117985 -2309790353 .0410711992
3 .4213665832 -5226192420 . 0460005529
4 .8319542602 .8955477962 .0226896684
5 1.4174350819 1.4379146184 .0078656754
6 2.1767569894 2.1814331978 .0019842800
7 3.1151752001 3.1159585681 .0003530589
8 4.2433929926 4.2434850891 -.0000429141
9 5.5769738664 5.5769811202 .0000034466
10 7.1372634130 7.1372637778 .0000001755
11 8.9538356848 8.9538356959 .0000000054
12 11.0691194848 11.0691194850 .0000000001
n = 32 n' =17
1 -0212539667 .0225775151 .0013308165
2 -1014880467 .1181364893 .0161066554
3 .2313703318 .2837315435 .0367590439
4 .4281625584 -5028891998 .0331916084
5 .7083237338 -7663017562 .0202106302
6 1.0728150€41 1.1020615789 -0193265831
7 1.5200677586 1.5318978031 .0045717209
8 2.0496021188 2.0537719222 .0017407160
9 2.€619849235 2.6632677368 .0005642149
10 3.3585132712 3.3588528353 .0001544540
11 4.1409982347 4.1410745802 .0000354567
1 5.0116623678 £ J116768049 .0000068133
13 5.9731199112 5.9731221892 .0000010866
14 7.0284055993 7.0284058970 . 0000001431
15 8.1810313620 8.1810313940 .0000000155
15 9.4350639127 9.4350639155 . 0000000014
17 10.7952245954 10.7952245956 . 0000000001
n = 64 n' = 23
1 .0109615336 .0112936532 .0003363445
2 -0550659069 .0594029977 . 0045647906
3 .1282525325 .1451687092 .01650076292
, 29



TABLE II.- Continued.

30

n =64 n' = 23
4 -2294179265 .2662436189 .0271832071
5 -3655073397 .4178090G91 -0263132347
6 .5421118538 5945791192 .0196294939
7 .7601447375 .7991787324 .0130424499
8 1.0190503483 1.0425922027 .0080538340
9 1.3182897476 1.3309553604 .0046499131
10 1.6575617149 1.6639218023 .0025025914
11 2.0367717604 2.0397792676 .0012503827
12 2.4559788735 2.4573135565 .0C05779825
13 2.9153514543 2.9159042425 - 0002465585
14 3.4151351711 3.4153478013 .000096893%
15 3.9556318607 3.9557075370 .0090350346
16 4.5371873692 4.5372122223 .0000116439
17 5.1601856915 5.1601932080 .0000035542
i3 5.8250470008 5.82504909209 . 0C00009956
19 6.5322278278 6.5322283615 . 0000002557
20 7.2822223566 7.2822224815 . 0000000602
21 §.0755643170 8.0755643438 . 0000000130
22 8.9128292551 38.9128292604 . 0000000026
23 9.7946371142 9.7946371151 . 0000000005
n = 1.8 n' = 32
1 . 0055646485 .0056474 386 .0000836954
2 .0286731117 .0297432178 .9011316178
3 . 0686191075 .0729961100 .0047528127
a .1238383560 .1351282785 .0115932142
5 .1941C69901 .2155251600 .0183257845
6 .28135508C5 .3130880575 .0204781205
7 .3878324001 .4262057173 .0183965411
8 5145492100 .5533849095 .0147608539
9 .6616147368 .6949482493 .0111662180
10 .8288591342 .8538093471 .0081292943
11 1.0160927402 1.0331216673 . 0057288341
12 1.2231683248 1.2341736061 .0039093147
13 1.43499857477 1.4568530792 .0025797170
14 1.6964847002 1.70064909206 .0016434498
i5 1.5626365278 1.9650916323 .0010092418
16 2.2484371391 2.2498418722 . 0005966957
17 2.5539011953 2.5546795382 .0003393272
15 2.8790574811 2.8794742G89 .0001854763
1. 3.2239453612 3.2241606823 . 0000973962
2 3.58861.2195% 3.5887193728 .0000491158
21 3.92731115618 3.9731622082 . 0000237800




TABLE II.- Concluded.

n = 128

4.3775021010
4.8018468266
5.2462127401
5.7106706464
6.1952950885
6.7001643509
7.2253605012
7.7709694533
8.337u810429
8.9237891120
9.5311915985

4.3775257587
4.8018573035
5.2462171976
5.7106724677
6.1952958030
65.7001646199
7.2253605984
7.7709694870
8.3370810542
8.9237891156
9.5311915996

.0000110517
-0090049295
.0000021100
. 0000003666
.0000003415
.0000001291
. 0000000468
.0000000163
.0000000054
. 0000000017
.0000000005
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